• Iran's HEIS surveys
  • 1 Introduction
    • 1.1 Sample design
      • 1.1.1 Rotating panel feature
    • 1.2 Different rounds
  • 2 Questionnaire details
    • 2.1 Part 1 - Member Characteristics
    • 2.2 Part 2 - Household Facilities
    • 2.3 Part 3 - Expenditure
    • 2.4 Part 4: Income
  • 3 Importing raw data
    • 3.1 Importing access files to R
    • 3.2 Importing code for all years
  • 4 Cleaning data
    • 4.1 Importing raw data and sampling information
    • 4.2 Cleaning Part 1
      • 4.2.1 Education code
    • 4.3 Cleaning Part 2
    • 4.4 Cleaning Part 3
      • 4.4.1 Price index and real expenditure
    • 4.5 Cleaning Part 4
    • 4.6 Building item-level data
    • 4.7 Building individual-level data
    • 4.8 Building Household-level data (summary files)
      • 4.8.1 Exporting to other formats.
    • 4.9 Special issues for different years
      • 4.9.1 The structure of Address variable
  • 5 Trends in expenditure items
    • 5.1 Total expenditure across COICOP groups
    • 5.2 Expenditure shares of COICOP groups
    • 5.3 Percapita expenditure across COICOP groups and regions
  • 6 Trends of household-level data
  • 7 Trends in individual-level data
  • 8 Some applications of household-level data
    • 8.1 Gas price reform in November 2019 in Iran and poverty

Household Expenditure and Income Surveys of Iran

Chapter 6 Trends of household-level data

In this section, I present the trend of variables in the household level data.

library(tidyverse) 
library(knitr)
library(kableExtra)

list_HH <- list.files(path = "./../exported", pattern = "^HH.*\\Rds$")

HH <- NULL
for (year in list_HH) {
  HH <- assign(year, readRDS(paste0("./../exported/",year))) %>% 
    filter(!is.na(weight)) %>%
    mutate(year = parse_number(year)) %>%
    bind_rows(HH)
  rm(list=year)
}

## Part 1 Tables
HH %>%
  mutate(rural = (urban=="R")*100,
         literate_share = literates/size*100,
         student_share = students/size*100,
         worker_share = employeds/size*100,
         female_head = (gender=="Female")*100,
         age_head = age,
         married_head = (maritalst=="Married")*100 ) %>%
  group_by(year) %>%
  summarize(across(c(khanevartype, rural, size, literate_share, student_share, worker_share, female_head, age_head, married_head),
                   ~weighted.mean(.x,weight,na.rm = T))) %>%
  pivot_longer(khanevartype:married_head, names_to = "household_characteristics", values_to = "value") %>%
  pivot_wider(household_characteristics, names_from="year", values_from="value")  %>%
  kable(caption = "Trend of household characteristics") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "300px")
Table 6.1: Trend of household characteristics
household_characteristics 89 90 91 92 93 94 95 96 97 98
khanevartype 1.001425 1.001476 1.001519 1.000743 1.000783 1.000405 1.001562 1.000723 1.001194 1.000865
rural 26.513652 27.132072 25.840282 26.546634 26.281693 26.032969 25.799046 24.381962 24.208448 23.808778
size 3.798605 3.757813 3.691389 3.558843 3.530496 3.514009 3.483756 3.474033 3.406665 3.385642
literate_share 74.123361 73.942737 74.445209 75.070818 75.325691 75.631608 75.914220 76.707228 77.068827 77.608500
student_share 19.988233 19.957806 19.729556 19.123822 18.938328 18.922012 18.354376 18.101260 17.703381 17.145618
worker_share 28.711848 27.737451 28.402473 28.495050 27.833124 27.528281 27.360331 27.863102 27.877265 27.139030
female_head 12.039654 13.105662 13.499221 11.860984 12.926797 13.121401 13.331555 13.052634 12.951039 13.694364
age_head 49.229949 50.187661 50.886746 48.424161 49.503263 50.250846 50.772740 51.002234 50.473374 51.594945
married_head 85.780743 85.099809 84.634586 86.413702 85.156362 85.072232 84.755488 85.278058 84.715716 84.429594
HH %>% group_by(year, education) %>%
  summarize(number = sum(weight)) %>%
  group_by(year) %>%
  mutate(share = number/sum(number)*100) %>%
  pivot_wider(education, names_from="year", values_from="share") %>%
  kable(caption = "Trend of householder education overtime") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "400px")
Table 6.1: Trend of householder education overtime
education 89 90 91 92 93 94 95 96 97 98
Elemantry 30.8873791 30.0060123 29.6624393 28.1108682 28.6612249 28.5967880 28.4217285 27.8124493 24.9708098 25.2882068
Secondary 14.8118892 14.9406503 15.1578981 17.5333777 16.9163876 16.7047939 17.0571640 16.8929828 17.0514975 16.5633981
HighSchool 0.0599023 0.0665720 0.0824854 0.1235294 1.9662765 1.5921116 1.4755727 1.2671930 1.6910818 1.3906651
Diploma 16.4182753 16.5928164 16.6424255 18.6959236 17.7038420 17.9842697 17.8778917 18.9642584 20.2945354 20.6423358
College 3.8490416 3.7239318 3.7488852 3.6979343 3.8813141 3.9431159 3.9489771 4.0575425 4.1388425 4.3868571
Bachelor 6.4995504 6.2200259 6.2539078 7.5618277 7.4830983 7.1797727 7.3110852 7.9976122 9.1940028 8.9422417
Master 1.1371255 1.3540776 1.6585932 1.8700700 2.2380763 2.3224073 2.4544241 2.8462404 3.5548844 3.4546376
PhD 0.2203447 0.1453565 0.1671739 0.1614647 0.2316636 0.3615697 0.4917702 0.5067268 0.2361718 0.4710277
Other 1.6524234 1.5268241 1.5659837 1.4073780 NA NA NA NA 0.9479936 0.8482233
NA 24.4640686 25.4237331 25.0602078 20.8376265 20.9181167 21.3151711 20.9613866 19.6549947 17.9201803 18.0124069
HH %>% select(wage_earning=income_w_y,self_employment=income_s_y, 
              pension=income_pension, rent=income_rent, interest=income_interest, 
              aid=income_aid, resale=income_resale, transfer=income_transfer,subsidy, 
              weight, cpi_y,year) %>%
  group_by(year) %>%
  summarize(across(wage_earning:subsidy,~weighted.mean(.x/cpi_y*100,weight,na.rm = T))) %>%
  pivot_longer(wage_earning:subsidy, names_to = "Income_type", values_to = "real_value") %>%
  ggplot(aes(x=year,y=log(real_value),color=Income_type,shape=Income_type)) +
  geom_line() + geom_point() + theme_bw() + ggtitle("log of mean houshold income")

HH %>% select(home_production=income_nm_miscellaneous, 
              homeownership=income_nm_house, public_service=income_nm_public,
              private_service=income_nm_private, agriculture=income_nm_agriculture, 
              nonagriculture=income_nm_nonagriculture, weight, cpi_y,year) %>%
  group_by(year) %>%
  summarize(across(home_production:nonagriculture,~weighted.mean(.x/cpi_y*100,weight,na.rm = T))) %>%
  pivot_longer(home_production:nonagriculture, names_to = "source", values_to = "real_value") %>%
  ggplot(aes(x=year,y=log(real_value),color=source,shape=source)) +
  geom_line() + geom_point() + theme_bw() + ggtitle("log of mean houshold non-monetary income")

## part 2 Tables
HH %>% group_by(year) %>%
  summarize(across(vehicle:microwave,~weighted.mean(.x,weight,na.rm = T)*100)) %>%
  pivot_longer(vehicle:microwave, names_to = "ownership", values_to = "value") %>%
  pivot_wider(ownership, names_from="year", values_from="value") %>%
  kable(caption = "Ownership of appliances") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "500px")
Table 6.1: Ownership of appliances
ownership 89 90 91 92 93 94 95 96 97 98
vehicle 32.044086 34.287054 36.8242848 38.5299868 39.9944086 40.998873 42.2872882 45.4317331 48.1431199 48.2492697
motorcycle 21.504870 21.405463 20.2043174 19.1132713 18.9545103 19.097189 19.1934633 19.4219233 17.5772700 17.2208943
bicycle 10.924286 10.608479 10.6754941 9.0778261 8.9290592 9.655370 10.1027445 10.9412084 10.6668708 10.0941152
radio 4.742952 5.241358 4.9344468 5.3041197 4.9670771 6.061735 5.2442089 4.8055049 5.5518916 4.7050730
radiotape 31.895173 24.930207 19.4586475 12.2757186 10.5067684 11.258175 9.3820330 8.2453068 8.0037494 5.6882916
TVbw 1.305965 1.082868 0.8998664 0.7809093 0.8451319 0.702049 0.7177877 0.5651113 0.6385632 0.5066087
TV 96.182448 96.766413 97.3237603 97.3842163 97.5080115 97.582360 97.1455161 97.2621551 97.1292036 97.3949559
VHS_VCD_DVD 59.593567 59.025357 55.6182407 52.8989633 48.1923690 43.537587 37.7488667 32.2751922 28.4568865 22.4121013
computer 30.199864 30.890259 31.7840556 30.5757689 31.8352162 33.106736 31.4917813 31.6752240 28.0523015 25.5712235
cellphone 84.350495 86.695630 89.3213491 91.7183319 92.2684064 92.928764 93.2140438 94.1244588 94.7057709 94.7116372
freezer 24.445325 21.698493 23.9012590 20.3137289 19.5963365 18.492470 18.5894680 19.2659699 19.0047403 17.4673227
refridgerator 68.301990 65.067908 61.4027282 53.6005521 51.1731606 48.173513 46.5271099 43.0734899 38.2532346 36.1354766
fridge 33.731229 37.046642 40.7812408 47.8358973 50.8064348 53.929239 55.5674523 58.8469481 63.7913480 65.4624733
stove 97.270895 97.598102 97.9139542 97.9611886 98.5980975 98.447226 98.0934357 98.6501027 98.9712134 98.9308520
vacuum 77.460019 79.025143 80.4163027 81.2552060 82.8954632 82.902395 83.5286247 84.5298620 85.3129588 85.5423046
washingmachine 65.948230 68.448201 70.9885895 72.7930617 74.4796373 74.757089 76.1726414 78.3892720 79.1847071 79.7893007
sewingmachine 53.910737 50.417097 51.4890258 46.3400695 44.9010903 43.580851 44.1681375 43.7784552 41.5559165 42.2718729
fan 46.863772 47.472098 47.0207720 41.2225361 42.6021861 44.712986 44.3071327 42.3200337 40.9795287 40.4627640
evapcoolingportable 3.602268 4.129166 3.8455888 3.0525691 3.3280634 4.389036 5.3321325 4.7600827 5.7264126 6.5562657
splitportable 2.092733 2.163763 2.0110037 1.7633157 1.6596367 2.973040 3.1354347 2.9899434 9.5607524 9.7233895
dishwasher 1.710184 1.520522 2.4377892 3.2325146 3.9786541 4.225521 4.3475737 5.5743686 6.4808225 5.9354742
microwave NaN NaN 4.3076758 6.0683142 6.8848563 7.700641 8.0485029 9.8171794 10.0095190 9.9102724
HH %>% group_by(year) %>%
  summarize(across(pipewater:wastewater,~weighted.mean(.x,weight,na.rm = T)*100)) %>%
  pivot_longer(pipewater:wastewater, names_to = "Facilities", values_to = "value") %>%
  pivot_wider(Facilities, names_from="year", values_from="value") %>%
  kable(caption = "Usage of facilities and utilities") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "500px")
Table 6.1: Usage of facilities and utilities
Facilities 89 90 91 92 93 94 95 96 97 98
pipewater 97.8785448 97.9130607 98.4710632 97.6265717 98.1272951 98.442079 98.4720568 98.4472712 98.223134 98.452090
electricity 99.8691970 99.8831778 99.9298740 99.8916748 99.9690206 99.978355 99.9810479 99.9796054 99.969377 99.984314
pipegas 78.3223284 79.1157120 81.0724332 81.4064838 82.9774731 84.270218 85.6867956 86.9416956 88.082540 89.248484
telephone 83.0497153 81.2992865 80.2274821 74.9571520 73.6896000 72.031910 70.5342963 68.3672583 63.497348 62.215469
internet 12.6857995 12.9691727 12.7475008 14.3161649 20.6185394 27.947556 34.9702771 46.3380861 51.064353 55.841567
bathroom 92.8538846 93.6542147 94.8153736 95.5067249 96.0755992 96.973625 97.3406737 97.6817778 97.537488 97.770370
kitchen 92.7014057 92.6727796 93.7739536 94.9355263 95.4203585 96.289655 96.4688741 96.8535643 96.746364 97.064488
evapcooling 51.9504903 51.5357049 53.5144524 52.7130350 52.8003160 53.462363 54.7791710 54.7452664 54.133939 53.838683
centralcooling 0.4756985 0.0926200 0.3145488 0.2417045 0.2363693 0.280906 0.3446441 0.3662051 1.614958 2.040089
centralheating 3.9045045 3.5679551 3.4620939 3.7985646 4.5095994 3.921872 3.3122853 4.0690850 4.889577 5.349666
package 0.9046314 0.7378605 0.9122994 2.5806133 3.2976652 4.274731 5.0126457 5.3153647 7.440690 8.200683
split 11.4852855 12.5263879 13.2354663 15.1816066 15.9254080 16.286405 17.2581213 18.6958676 14.872220 15.962490
wastewater 19.1754341 22.4744916 24.7278008 26.0863063 29.1130967 28.907997 31.3666964 33.1990240 32.643050 34.795353
HH %>% group_by(year) %>%
  summarize(across(celebration_m:occasions_other_y,~weighted.mean(.x,weight,na.rm = T)*100)) %>%
  pivot_longer(celebration_m:occasions_other_y, names_to = "Events", values_to = "value") %>%
  pivot_wider(Events, names_from="year", values_from="value") %>%
  kable(caption = "Percent of special occasions") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "500px")
Table 6.1: Percent of special occasions
Events 89 90 91 92 93 94 95 96 97 98
celebration_m 0.6841955 0.6062397 0.7200362 0.5227151 0.3953824 0.4439151 0.6756492 NaN NaN NaN
celebration_y 8.7097186 6.8337356 6.2903440 5.1810402 4.3878037 4.0725063 4.2342948 NaN NaN NaN
mourning_m 0.3569481 0.2628881 0.3867271 0.2453985 0.2262652 0.3281505 0.3627335 NaN NaN NaN
mourning_y 4.9364529 4.3373832 3.7345113 3.0161507 2.9730448 2.5902881 2.6705856 NaN NaN NaN
house_maintenance_m 0.5716507 0.4078366 0.5905258 0.3541650 0.2407359 0.3676058 0.2982854 NaN NaN NaN
house_maintenance_y 18.9818650 14.7795837 13.7458350 12.9355498 12.5028331 13.7925323 11.9127170 NaN NaN NaN
pilgrimage_m 0.5065514 0.4033955 0.4999235 0.3797466 0.2792169 0.3317466 0.3887250 NaN NaN NaN
pilgrimage_y 4.7866841 5.3491242 4.1393377 3.8022088 3.8303963 3.5279654 4.2349734 NaN NaN NaN
travel_abroad_m 0.0614426 0.0436193 0.0504996 0.0096461 0.0307420 0.0470456 0.0199105 NaN NaN NaN
travel_abroad_y 0.7653344 0.7060629 0.3496505 0.3342689 0.3689184 0.4636468 0.4786188 NaN NaN NaN
surgery_m 1.3128234 7.4659919 1.0261479 0.8442002 0.7111846 0.7327604 1.1845466 NaN NaN NaN
surgery_y NaN NaN 8.4839387 10.2534603 10.0223565 10.1378510 11.4536563 NaN NaN NaN
occasions_other_m 0.1824038 0.2011443 0.0519317 0.1122528 0.0663388 0.0234342 0.0921761 NaN NaN NaN
occasions_other_y 1.4434763 1.2628412 1.0477819 0.9028352 0.9128925 0.7339645 1.3429496 NaN NaN NaN
HH %>% group_by(year, tenure) %>%
  summarize(number = sum(weight)) %>%
  group_by(year) %>%
  mutate(share = number/sum(number)*100) %>%
  pivot_wider(tenure, names_from="year", values_from="share") %>%
  kable(caption = "Type of land tenure") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "300px")
Table 6.1: Type of land tenure
tenure 89 90 91 92 93 94 95 96 97 98
OwnedEstateLand 70.509826 71.9112625 72.4965948 68.5082156 70.2453572 71.2463715 70.8829332 70.2132045 68.5195650 70.9943861
OwnedEstate 0.460459 0.5058831 0.8442999 1.2626435 0.5667466 0.4496952 0.4745410 0.7462290 0.7791592 0.7332434
Rent 12.512256 12.8255755 11.9691409 13.9420839 13.0644895 13.1281141 12.8025961 12.5513282 13.0487088 11.8665090
Mortgage 6.159666 5.3485091 5.4054535 6.4215287 6.1370277 6.0557046 7.0420388 7.4787194 8.1184158 7.5853020
Service 1.865255 1.9975804 1.7681756 1.2975362 1.0589974 0.9191415 0.9599049 0.9439448 1.0119532 1.0289055
Free 8.469659 7.3911484 7.4557349 8.5110640 8.9165892 8.0804127 7.6595030 7.9608811 8.3280660 7.6845880
Other 0.022879 0.0200409 0.0606004 0.0569281 0.0107924 0.1205604 0.1784831 0.1056929 0.1941321 0.1070660
HH %>% group_by(year, material) %>%
  summarize(number = sum(weight)) %>%
  group_by(year) %>%
  mutate(share = number/sum(number)*100,
         material = fct_explicit_na(material, na_level = "Concrete/Metal")) %>%
  pivot_wider(material, names_from="year", values_from="share") %>%
  kable(caption = "Structure of construction") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "300px")
Table 6.1: Structure of construction
material 89 90 91 92 93 94 95 96 97 98
MetalBlock 50.7487859 50.2823799 50.2805018 45.0873600 45.0127169 45.6227340 45.1298437 44.9034213 41.0373447 39.6361619
BrickWood 9.2253562 8.1992067 7.8001110 7.1512141 6.9948768 6.5600465 6.0090994 5.1489506 4.5170369 4.4998637
Cement 5.6019810 6.1838089 6.2032411 6.2924648 6.2019466 6.4606897 6.6011936 6.8967609 6.9855811 6.3647967
Brick 0.5284891 1.0752810 0.9108127 0.6688838 0.6041013 0.9494151 0.7717006 0.6187621 0.4116466 0.4429398
Wood 0.1172491 0.0981936 0.0996924 0.1150438 0.0784970 0.0435057 0.0297563 0.0329064 0.0480085 0.1399719
WoodKesht 3.9534235 3.8622777 3.4179404 2.5659179 2.5951111 2.3658098 2.3190851 2.2623997 1.8494649 1.5211601
KeshtGel 1.9755097 2.1057696 1.8874040 1.5579500 1.4102031 1.3254096 1.3512399 1.3184669 1.0748399 0.9721298
Other 1.6571423 1.5527438 1.7318665 3.2002048 3.2793974 2.2860894 1.9200372 1.5619829 1.6396876 1.4928485
Concrete/Metal 26.1920632 26.6403387 27.6684302 33.3609607 33.8231497 34.3863001 35.8680442 37.2563493 42.4363899 44.9301275
HH %>% group_by(year) %>%
  summarize(across(room:space,~weighted.mean(.x,weight,na.rm = T))) %>%
  kable(caption = "House characteristics") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "400px")
Table 6.1: House characteristics
year room space
89 3.404627 92.64194
90 3.406734 93.43689
91 3.511407 95.19792
92 3.561369 93.30407
93 3.578862 93.62449
94 3.603388 94.02177
95 3.604649 94.93553
96 3.631116 95.02705
97 3.659141 96.04347
98 3.668576 95.78518
HH %>%  group_by(year, province) %>%
  summarize(car_ownership=weighted.mean(vehicle,weight)*100) %>%
  pivot_wider(province, names_from="year", values_from="car_ownership") %>%
  kable(caption = "Car ownership by province and year") %>% 
  kable_styling("striped", "hover") %>%
  scroll_box(height = "500px")
Table 6.1: Car ownership by province and year
province 89 90 91 92 93 94 95 96 97 98
Markazi 31.89084 34.71904 43.01038 39.15167 42.88604 42.13075 47.87688 46.83616 51.64630 49.57154
Gilan 22.97184 26.18817 28.31736 31.51883 32.77052 32.40062 31.82786 34.25897 36.47945 35.20249
Mazandaran 32.16812 28.61454 28.33231 35.43812 36.44276 39.69487 39.79995 45.61835 45.85421 43.52625
AzarbaijanSharghi 30.14212 30.86273 32.97825 37.50317 37.22126 36.57151 38.77929 39.48517 43.10528 43.27720
AzarbaijanGharbi 32.94096 34.18020 36.98186 41.78300 42.96266 47.62821 40.06852 45.50664 45.40959 54.73390
Kermanshah 23.97959 26.03655 27.94130 30.37149 32.39774 29.53845 30.79875 33.61177 43.05263 42.31064
Kouzestan 31.59621 29.53371 35.74085 35.52991 34.45655 32.42161 34.00649 38.74230 38.62614 40.07028
Fars 32.58198 35.68393 38.88914 38.76896 37.81940 41.40155 43.09984 46.08379 51.16417 48.51447
Kerman 41.86930 43.07374 43.93290 43.80613 38.69740 42.51203 47.94151 54.50490 55.01675 54.21379
KhorasanRazavi 30.08230 30.55565 33.87559 37.54692 38.68014 36.49834 39.16248 42.27683 45.79554 44.00599
Esfahan 39.17186 44.35660 42.49254 42.88777 47.57625 46.97424 48.97631 52.98739 58.29897 60.19234
SistanBalouchestan 18.56919 16.24629 17.18576 19.91114 18.87572 20.07803 21.06130 22.73198 28.23147 28.00504
Kordestan 21.00364 21.45523 22.40532 26.60195 28.66375 28.19885 31.54782 36.57922 37.55322 41.69228
Hamedan 28.38906 26.02956 30.10632 27.24881 30.27929 36.73583 39.63895 43.01405 43.48110 38.64652
CharmahalBakhtiari 29.05778 34.59619 34.66550 36.42123 40.51586 39.62012 44.89361 48.58939 50.50325 46.09934
Lorestan 24.29695 27.46413 28.83553 21.81317 27.93626 22.76006 22.88330 30.98613 31.61587 32.93983
Ilam 33.58796 33.56935 29.34788 33.40352 34.89885 33.36855 34.46365 38.83065 44.75097 44.21638
KohkilouyeBoyerahamad 28.22257 27.46634 24.37835 29.30624 28.78879 28.05718 21.60092 22.00725 29.49408 33.02894
Boushehr 36.44195 42.14790 42.87873 46.48129 50.24133 48.40139 50.57697 53.60981 59.71293 54.40757
Zanjan 29.89925 35.95433 35.24348 37.07151 36.83635 36.01768 32.35527 38.78832 42.13578 45.73873
Semnan 33.51018 35.27353 37.37244 43.67425 44.65979 42.84886 44.62168 47.87019 50.79232 52.66296
Yazd 57.39872 57.21516 60.37657 60.83035 62.06805 60.33636 62.36644 66.94192 70.21662 70.79475
Hormozgan 22.93388 29.90107 32.35488 34.98067 40.09436 41.67693 41.42824 42.76953 41.10113 39.64233
Tehran 36.32085 41.52333 45.49218 47.97036 50.56713 54.14764 55.27813 56.24781 58.57913 60.30397
Ardebil 24.56566 27.23159 30.43822 24.75731 26.35355 30.64916 31.02180 36.32265 35.08313 35.89254
Qom 28.18728 34.27098 36.03244 42.53090 44.26291 37.00672 48.31371 51.78613 51.77588 52.62781
Qazvin 33.17309 38.27826 39.96982 38.11254 34.95712 37.24503 37.40380 37.62343 45.94644 43.72430
Golestan 23.73958 28.89320 32.89236 30.24539 29.57864 31.97782 33.30858 36.58667 39.37090 39.30258
KhorasanShomali 20.79677 22.35501 24.54880 28.61405 31.60961 35.07212 36.57086 40.60135 41.42278 41.55714
KhorasanJonoubi 37.19021 37.96605 39.16171 42.48087 41.35287 43.29437 38.33531 44.96586 47.76810 49.45761
Alborz NA 38.41375 40.27678 42.81827 49.35706 51.15320 52.03617 52.10986 54.43409 49.62397