Trends of household-level data
In this section, I present the trend of variables in the household level data.
library(tidyverse)
library(knitr)
library(kableExtra)
list_HH <- list.files(path = "./../exported", pattern = "^HH.*\\Rds$")
HH <- NULL
for (year in list_HH) {
HH <- assign(year, readRDS(paste0("./../exported/",year))) %>%
filter(!is.na(weight)) %>%
mutate(year = parse_number(year)) %>%
bind_rows(HH)
rm(list=year)
}
## Part 1 Tables
HH %>%
mutate(rural = (urban=="R")*100,
literate_share = literates/size*100,
student_share = students/size*100,
worker_share = employeds/size*100,
female_head = (gender=="Female")*100,
age_head = age,
married_head = (maritalst=="Married")*100 ) %>%
group_by(year) %>%
summarize(across(c(khanevartype, rural, size, literate_share, student_share, worker_share, female_head, age_head, married_head),
~weighted.mean(.x,weight,na.rm = T))) %>%
pivot_longer(khanevartype:married_head, names_to = "household_characteristics", values_to = "value") %>%
pivot_wider(household_characteristics, names_from="year", values_from="value") %>%
kable(caption = "Trend of household characteristics") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "300px")
Table 6.1: Trend of household characteristics
household_characteristics
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
khanevartype
|
1.001425
|
1.001476
|
1.001519
|
1.000743
|
1.000783
|
1.000405
|
1.001562
|
1.000723
|
1.001194
|
1.000865
|
rural
|
26.513652
|
27.132072
|
25.840282
|
26.546634
|
26.281693
|
26.032969
|
25.799046
|
24.381962
|
24.208448
|
23.808778
|
size
|
3.798605
|
3.757813
|
3.691389
|
3.558843
|
3.530496
|
3.514009
|
3.483756
|
3.474033
|
3.406665
|
3.385642
|
literate_share
|
74.123361
|
73.942737
|
74.445209
|
75.070818
|
75.325691
|
75.631608
|
75.914220
|
76.707228
|
77.068827
|
77.608500
|
student_share
|
19.988233
|
19.957806
|
19.729556
|
19.123822
|
18.938328
|
18.922012
|
18.354376
|
18.101260
|
17.703381
|
17.145618
|
worker_share
|
28.711848
|
27.737451
|
28.402473
|
28.495050
|
27.833124
|
27.528281
|
27.360331
|
27.863102
|
27.877265
|
27.139030
|
female_head
|
12.039654
|
13.105662
|
13.499221
|
11.860984
|
12.926797
|
13.121401
|
13.331555
|
13.052634
|
12.951039
|
13.694364
|
age_head
|
49.229949
|
50.187661
|
50.886746
|
48.424161
|
49.503263
|
50.250846
|
50.772740
|
51.002234
|
50.473374
|
51.594945
|
married_head
|
85.780743
|
85.099809
|
84.634586
|
86.413702
|
85.156362
|
85.072232
|
84.755488
|
85.278058
|
84.715716
|
84.429594
|
HH %>% group_by(year, education) %>%
summarize(number = sum(weight)) %>%
group_by(year) %>%
mutate(share = number/sum(number)*100) %>%
pivot_wider(education, names_from="year", values_from="share") %>%
kable(caption = "Trend of householder education overtime") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "400px")
Table 6.1: Trend of householder education overtime
education
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
Elemantry
|
30.8873791
|
30.0060123
|
29.6624393
|
28.1108682
|
28.6612249
|
28.5967880
|
28.4217285
|
27.8124493
|
24.9708098
|
25.2882068
|
Secondary
|
14.8118892
|
14.9406503
|
15.1578981
|
17.5333777
|
16.9163876
|
16.7047939
|
17.0571640
|
16.8929828
|
17.0514975
|
16.5633981
|
HighSchool
|
0.0599023
|
0.0665720
|
0.0824854
|
0.1235294
|
1.9662765
|
1.5921116
|
1.4755727
|
1.2671930
|
1.6910818
|
1.3906651
|
Diploma
|
16.4182753
|
16.5928164
|
16.6424255
|
18.6959236
|
17.7038420
|
17.9842697
|
17.8778917
|
18.9642584
|
20.2945354
|
20.6423358
|
College
|
3.8490416
|
3.7239318
|
3.7488852
|
3.6979343
|
3.8813141
|
3.9431159
|
3.9489771
|
4.0575425
|
4.1388425
|
4.3868571
|
Bachelor
|
6.4995504
|
6.2200259
|
6.2539078
|
7.5618277
|
7.4830983
|
7.1797727
|
7.3110852
|
7.9976122
|
9.1940028
|
8.9422417
|
Master
|
1.1371255
|
1.3540776
|
1.6585932
|
1.8700700
|
2.2380763
|
2.3224073
|
2.4544241
|
2.8462404
|
3.5548844
|
3.4546376
|
PhD
|
0.2203447
|
0.1453565
|
0.1671739
|
0.1614647
|
0.2316636
|
0.3615697
|
0.4917702
|
0.5067268
|
0.2361718
|
0.4710277
|
Other
|
1.6524234
|
1.5268241
|
1.5659837
|
1.4073780
|
NA
|
NA
|
NA
|
NA
|
0.9479936
|
0.8482233
|
NA
|
24.4640686
|
25.4237331
|
25.0602078
|
20.8376265
|
20.9181167
|
21.3151711
|
20.9613866
|
19.6549947
|
17.9201803
|
18.0124069
|
HH %>% select(wage_earning=income_w_y,self_employment=income_s_y,
pension=income_pension, rent=income_rent, interest=income_interest,
aid=income_aid, resale=income_resale, transfer=income_transfer,subsidy,
weight, cpi_y,year) %>%
group_by(year) %>%
summarize(across(wage_earning:subsidy,~weighted.mean(.x/cpi_y*100,weight,na.rm = T))) %>%
pivot_longer(wage_earning:subsidy, names_to = "Income_type", values_to = "real_value") %>%
ggplot(aes(x=year,y=log(real_value),color=Income_type,shape=Income_type)) +
geom_line() + geom_point() + theme_bw() + ggtitle("log of mean houshold income")
HH %>% select(home_production=income_nm_miscellaneous,
homeownership=income_nm_house, public_service=income_nm_public,
private_service=income_nm_private, agriculture=income_nm_agriculture,
nonagriculture=income_nm_nonagriculture, weight, cpi_y,year) %>%
group_by(year) %>%
summarize(across(home_production:nonagriculture,~weighted.mean(.x/cpi_y*100,weight,na.rm = T))) %>%
pivot_longer(home_production:nonagriculture, names_to = "source", values_to = "real_value") %>%
ggplot(aes(x=year,y=log(real_value),color=source,shape=source)) +
geom_line() + geom_point() + theme_bw() + ggtitle("log of mean houshold non-monetary income")
## part 2 Tables
HH %>% group_by(year) %>%
summarize(across(vehicle:microwave,~weighted.mean(.x,weight,na.rm = T)*100)) %>%
pivot_longer(vehicle:microwave, names_to = "ownership", values_to = "value") %>%
pivot_wider(ownership, names_from="year", values_from="value") %>%
kable(caption = "Ownership of appliances") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "500px")
Table 6.1: Ownership of appliances
ownership
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
vehicle
|
32.044086
|
34.287054
|
36.8242848
|
38.5299868
|
39.9944086
|
40.998873
|
42.2872882
|
45.4317331
|
48.1431199
|
48.2492697
|
motorcycle
|
21.504870
|
21.405463
|
20.2043174
|
19.1132713
|
18.9545103
|
19.097189
|
19.1934633
|
19.4219233
|
17.5772700
|
17.2208943
|
bicycle
|
10.924286
|
10.608479
|
10.6754941
|
9.0778261
|
8.9290592
|
9.655370
|
10.1027445
|
10.9412084
|
10.6668708
|
10.0941152
|
radio
|
4.742952
|
5.241358
|
4.9344468
|
5.3041197
|
4.9670771
|
6.061735
|
5.2442089
|
4.8055049
|
5.5518916
|
4.7050730
|
radiotape
|
31.895173
|
24.930207
|
19.4586475
|
12.2757186
|
10.5067684
|
11.258175
|
9.3820330
|
8.2453068
|
8.0037494
|
5.6882916
|
TVbw
|
1.305965
|
1.082868
|
0.8998664
|
0.7809093
|
0.8451319
|
0.702049
|
0.7177877
|
0.5651113
|
0.6385632
|
0.5066087
|
TV
|
96.182448
|
96.766413
|
97.3237603
|
97.3842163
|
97.5080115
|
97.582360
|
97.1455161
|
97.2621551
|
97.1292036
|
97.3949559
|
VHS_VCD_DVD
|
59.593567
|
59.025357
|
55.6182407
|
52.8989633
|
48.1923690
|
43.537587
|
37.7488667
|
32.2751922
|
28.4568865
|
22.4121013
|
computer
|
30.199864
|
30.890259
|
31.7840556
|
30.5757689
|
31.8352162
|
33.106736
|
31.4917813
|
31.6752240
|
28.0523015
|
25.5712235
|
cellphone
|
84.350495
|
86.695630
|
89.3213491
|
91.7183319
|
92.2684064
|
92.928764
|
93.2140438
|
94.1244588
|
94.7057709
|
94.7116372
|
freezer
|
24.445325
|
21.698493
|
23.9012590
|
20.3137289
|
19.5963365
|
18.492470
|
18.5894680
|
19.2659699
|
19.0047403
|
17.4673227
|
refridgerator
|
68.301990
|
65.067908
|
61.4027282
|
53.6005521
|
51.1731606
|
48.173513
|
46.5271099
|
43.0734899
|
38.2532346
|
36.1354766
|
fridge
|
33.731229
|
37.046642
|
40.7812408
|
47.8358973
|
50.8064348
|
53.929239
|
55.5674523
|
58.8469481
|
63.7913480
|
65.4624733
|
stove
|
97.270895
|
97.598102
|
97.9139542
|
97.9611886
|
98.5980975
|
98.447226
|
98.0934357
|
98.6501027
|
98.9712134
|
98.9308520
|
vacuum
|
77.460019
|
79.025143
|
80.4163027
|
81.2552060
|
82.8954632
|
82.902395
|
83.5286247
|
84.5298620
|
85.3129588
|
85.5423046
|
washingmachine
|
65.948230
|
68.448201
|
70.9885895
|
72.7930617
|
74.4796373
|
74.757089
|
76.1726414
|
78.3892720
|
79.1847071
|
79.7893007
|
sewingmachine
|
53.910737
|
50.417097
|
51.4890258
|
46.3400695
|
44.9010903
|
43.580851
|
44.1681375
|
43.7784552
|
41.5559165
|
42.2718729
|
fan
|
46.863772
|
47.472098
|
47.0207720
|
41.2225361
|
42.6021861
|
44.712986
|
44.3071327
|
42.3200337
|
40.9795287
|
40.4627640
|
evapcoolingportable
|
3.602268
|
4.129166
|
3.8455888
|
3.0525691
|
3.3280634
|
4.389036
|
5.3321325
|
4.7600827
|
5.7264126
|
6.5562657
|
splitportable
|
2.092733
|
2.163763
|
2.0110037
|
1.7633157
|
1.6596367
|
2.973040
|
3.1354347
|
2.9899434
|
9.5607524
|
9.7233895
|
dishwasher
|
1.710184
|
1.520522
|
2.4377892
|
3.2325146
|
3.9786541
|
4.225521
|
4.3475737
|
5.5743686
|
6.4808225
|
5.9354742
|
microwave
|
NaN
|
NaN
|
4.3076758
|
6.0683142
|
6.8848563
|
7.700641
|
8.0485029
|
9.8171794
|
10.0095190
|
9.9102724
|
HH %>% group_by(year) %>%
summarize(across(pipewater:wastewater,~weighted.mean(.x,weight,na.rm = T)*100)) %>%
pivot_longer(pipewater:wastewater, names_to = "Facilities", values_to = "value") %>%
pivot_wider(Facilities, names_from="year", values_from="value") %>%
kable(caption = "Usage of facilities and utilities") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "500px")
Table 6.1: Usage of facilities and utilities
Facilities
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
pipewater
|
97.8785448
|
97.9130607
|
98.4710632
|
97.6265717
|
98.1272951
|
98.442079
|
98.4720568
|
98.4472712
|
98.223134
|
98.452090
|
electricity
|
99.8691970
|
99.8831778
|
99.9298740
|
99.8916748
|
99.9690206
|
99.978355
|
99.9810479
|
99.9796054
|
99.969377
|
99.984314
|
pipegas
|
78.3223284
|
79.1157120
|
81.0724332
|
81.4064838
|
82.9774731
|
84.270218
|
85.6867956
|
86.9416956
|
88.082540
|
89.248484
|
telephone
|
83.0497153
|
81.2992865
|
80.2274821
|
74.9571520
|
73.6896000
|
72.031910
|
70.5342963
|
68.3672583
|
63.497348
|
62.215469
|
internet
|
12.6857995
|
12.9691727
|
12.7475008
|
14.3161649
|
20.6185394
|
27.947556
|
34.9702771
|
46.3380861
|
51.064353
|
55.841567
|
bathroom
|
92.8538846
|
93.6542147
|
94.8153736
|
95.5067249
|
96.0755992
|
96.973625
|
97.3406737
|
97.6817778
|
97.537488
|
97.770370
|
kitchen
|
92.7014057
|
92.6727796
|
93.7739536
|
94.9355263
|
95.4203585
|
96.289655
|
96.4688741
|
96.8535643
|
96.746364
|
97.064488
|
evapcooling
|
51.9504903
|
51.5357049
|
53.5144524
|
52.7130350
|
52.8003160
|
53.462363
|
54.7791710
|
54.7452664
|
54.133939
|
53.838683
|
centralcooling
|
0.4756985
|
0.0926200
|
0.3145488
|
0.2417045
|
0.2363693
|
0.280906
|
0.3446441
|
0.3662051
|
1.614958
|
2.040089
|
centralheating
|
3.9045045
|
3.5679551
|
3.4620939
|
3.7985646
|
4.5095994
|
3.921872
|
3.3122853
|
4.0690850
|
4.889577
|
5.349666
|
package
|
0.9046314
|
0.7378605
|
0.9122994
|
2.5806133
|
3.2976652
|
4.274731
|
5.0126457
|
5.3153647
|
7.440690
|
8.200683
|
split
|
11.4852855
|
12.5263879
|
13.2354663
|
15.1816066
|
15.9254080
|
16.286405
|
17.2581213
|
18.6958676
|
14.872220
|
15.962490
|
wastewater
|
19.1754341
|
22.4744916
|
24.7278008
|
26.0863063
|
29.1130967
|
28.907997
|
31.3666964
|
33.1990240
|
32.643050
|
34.795353
|
HH %>% group_by(year) %>%
summarize(across(celebration_m:occasions_other_y,~weighted.mean(.x,weight,na.rm = T)*100)) %>%
pivot_longer(celebration_m:occasions_other_y, names_to = "Events", values_to = "value") %>%
pivot_wider(Events, names_from="year", values_from="value") %>%
kable(caption = "Percent of special occasions") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "500px")
Table 6.1: Percent of special occasions
Events
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
celebration_m
|
0.6841955
|
0.6062397
|
0.7200362
|
0.5227151
|
0.3953824
|
0.4439151
|
0.6756492
|
NaN
|
NaN
|
NaN
|
celebration_y
|
8.7097186
|
6.8337356
|
6.2903440
|
5.1810402
|
4.3878037
|
4.0725063
|
4.2342948
|
NaN
|
NaN
|
NaN
|
mourning_m
|
0.3569481
|
0.2628881
|
0.3867271
|
0.2453985
|
0.2262652
|
0.3281505
|
0.3627335
|
NaN
|
NaN
|
NaN
|
mourning_y
|
4.9364529
|
4.3373832
|
3.7345113
|
3.0161507
|
2.9730448
|
2.5902881
|
2.6705856
|
NaN
|
NaN
|
NaN
|
house_maintenance_m
|
0.5716507
|
0.4078366
|
0.5905258
|
0.3541650
|
0.2407359
|
0.3676058
|
0.2982854
|
NaN
|
NaN
|
NaN
|
house_maintenance_y
|
18.9818650
|
14.7795837
|
13.7458350
|
12.9355498
|
12.5028331
|
13.7925323
|
11.9127170
|
NaN
|
NaN
|
NaN
|
pilgrimage_m
|
0.5065514
|
0.4033955
|
0.4999235
|
0.3797466
|
0.2792169
|
0.3317466
|
0.3887250
|
NaN
|
NaN
|
NaN
|
pilgrimage_y
|
4.7866841
|
5.3491242
|
4.1393377
|
3.8022088
|
3.8303963
|
3.5279654
|
4.2349734
|
NaN
|
NaN
|
NaN
|
travel_abroad_m
|
0.0614426
|
0.0436193
|
0.0504996
|
0.0096461
|
0.0307420
|
0.0470456
|
0.0199105
|
NaN
|
NaN
|
NaN
|
travel_abroad_y
|
0.7653344
|
0.7060629
|
0.3496505
|
0.3342689
|
0.3689184
|
0.4636468
|
0.4786188
|
NaN
|
NaN
|
NaN
|
surgery_m
|
1.3128234
|
7.4659919
|
1.0261479
|
0.8442002
|
0.7111846
|
0.7327604
|
1.1845466
|
NaN
|
NaN
|
NaN
|
surgery_y
|
NaN
|
NaN
|
8.4839387
|
10.2534603
|
10.0223565
|
10.1378510
|
11.4536563
|
NaN
|
NaN
|
NaN
|
occasions_other_m
|
0.1824038
|
0.2011443
|
0.0519317
|
0.1122528
|
0.0663388
|
0.0234342
|
0.0921761
|
NaN
|
NaN
|
NaN
|
occasions_other_y
|
1.4434763
|
1.2628412
|
1.0477819
|
0.9028352
|
0.9128925
|
0.7339645
|
1.3429496
|
NaN
|
NaN
|
NaN
|
HH %>% group_by(year, tenure) %>%
summarize(number = sum(weight)) %>%
group_by(year) %>%
mutate(share = number/sum(number)*100) %>%
pivot_wider(tenure, names_from="year", values_from="share") %>%
kable(caption = "Type of land tenure") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "300px")
Table 6.1: Type of land tenure
tenure
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
OwnedEstateLand
|
70.509826
|
71.9112625
|
72.4965948
|
68.5082156
|
70.2453572
|
71.2463715
|
70.8829332
|
70.2132045
|
68.5195650
|
70.9943861
|
OwnedEstate
|
0.460459
|
0.5058831
|
0.8442999
|
1.2626435
|
0.5667466
|
0.4496952
|
0.4745410
|
0.7462290
|
0.7791592
|
0.7332434
|
Rent
|
12.512256
|
12.8255755
|
11.9691409
|
13.9420839
|
13.0644895
|
13.1281141
|
12.8025961
|
12.5513282
|
13.0487088
|
11.8665090
|
Mortgage
|
6.159666
|
5.3485091
|
5.4054535
|
6.4215287
|
6.1370277
|
6.0557046
|
7.0420388
|
7.4787194
|
8.1184158
|
7.5853020
|
Service
|
1.865255
|
1.9975804
|
1.7681756
|
1.2975362
|
1.0589974
|
0.9191415
|
0.9599049
|
0.9439448
|
1.0119532
|
1.0289055
|
Free
|
8.469659
|
7.3911484
|
7.4557349
|
8.5110640
|
8.9165892
|
8.0804127
|
7.6595030
|
7.9608811
|
8.3280660
|
7.6845880
|
Other
|
0.022879
|
0.0200409
|
0.0606004
|
0.0569281
|
0.0107924
|
0.1205604
|
0.1784831
|
0.1056929
|
0.1941321
|
0.1070660
|
HH %>% group_by(year, material) %>%
summarize(number = sum(weight)) %>%
group_by(year) %>%
mutate(share = number/sum(number)*100,
material = fct_explicit_na(material, na_level = "Concrete/Metal")) %>%
pivot_wider(material, names_from="year", values_from="share") %>%
kable(caption = "Structure of construction") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "300px")
Table 6.1: Structure of construction
material
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
MetalBlock
|
50.7487859
|
50.2823799
|
50.2805018
|
45.0873600
|
45.0127169
|
45.6227340
|
45.1298437
|
44.9034213
|
41.0373447
|
39.6361619
|
BrickWood
|
9.2253562
|
8.1992067
|
7.8001110
|
7.1512141
|
6.9948768
|
6.5600465
|
6.0090994
|
5.1489506
|
4.5170369
|
4.4998637
|
Cement
|
5.6019810
|
6.1838089
|
6.2032411
|
6.2924648
|
6.2019466
|
6.4606897
|
6.6011936
|
6.8967609
|
6.9855811
|
6.3647967
|
Brick
|
0.5284891
|
1.0752810
|
0.9108127
|
0.6688838
|
0.6041013
|
0.9494151
|
0.7717006
|
0.6187621
|
0.4116466
|
0.4429398
|
Wood
|
0.1172491
|
0.0981936
|
0.0996924
|
0.1150438
|
0.0784970
|
0.0435057
|
0.0297563
|
0.0329064
|
0.0480085
|
0.1399719
|
WoodKesht
|
3.9534235
|
3.8622777
|
3.4179404
|
2.5659179
|
2.5951111
|
2.3658098
|
2.3190851
|
2.2623997
|
1.8494649
|
1.5211601
|
KeshtGel
|
1.9755097
|
2.1057696
|
1.8874040
|
1.5579500
|
1.4102031
|
1.3254096
|
1.3512399
|
1.3184669
|
1.0748399
|
0.9721298
|
Other
|
1.6571423
|
1.5527438
|
1.7318665
|
3.2002048
|
3.2793974
|
2.2860894
|
1.9200372
|
1.5619829
|
1.6396876
|
1.4928485
|
Concrete/Metal
|
26.1920632
|
26.6403387
|
27.6684302
|
33.3609607
|
33.8231497
|
34.3863001
|
35.8680442
|
37.2563493
|
42.4363899
|
44.9301275
|
HH %>% group_by(year) %>%
summarize(across(room:space,~weighted.mean(.x,weight,na.rm = T))) %>%
kable(caption = "House characteristics") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "400px")
Table 6.1: House characteristics
year
|
room
|
space
|
89
|
3.404627
|
92.64194
|
90
|
3.406734
|
93.43689
|
91
|
3.511407
|
95.19792
|
92
|
3.561369
|
93.30407
|
93
|
3.578862
|
93.62449
|
94
|
3.603388
|
94.02177
|
95
|
3.604649
|
94.93553
|
96
|
3.631116
|
95.02705
|
97
|
3.659141
|
96.04347
|
98
|
3.668576
|
95.78518
|
HH %>% group_by(year, province) %>%
summarize(car_ownership=weighted.mean(vehicle,weight)*100) %>%
pivot_wider(province, names_from="year", values_from="car_ownership") %>%
kable(caption = "Car ownership by province and year") %>%
kable_styling("striped", "hover") %>%
scroll_box(height = "500px")
Table 6.1: Car ownership by province and year
province
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
Markazi
|
31.89084
|
34.71904
|
43.01038
|
39.15167
|
42.88604
|
42.13075
|
47.87688
|
46.83616
|
51.64630
|
49.57154
|
Gilan
|
22.97184
|
26.18817
|
28.31736
|
31.51883
|
32.77052
|
32.40062
|
31.82786
|
34.25897
|
36.47945
|
35.20249
|
Mazandaran
|
32.16812
|
28.61454
|
28.33231
|
35.43812
|
36.44276
|
39.69487
|
39.79995
|
45.61835
|
45.85421
|
43.52625
|
AzarbaijanSharghi
|
30.14212
|
30.86273
|
32.97825
|
37.50317
|
37.22126
|
36.57151
|
38.77929
|
39.48517
|
43.10528
|
43.27720
|
AzarbaijanGharbi
|
32.94096
|
34.18020
|
36.98186
|
41.78300
|
42.96266
|
47.62821
|
40.06852
|
45.50664
|
45.40959
|
54.73390
|
Kermanshah
|
23.97959
|
26.03655
|
27.94130
|
30.37149
|
32.39774
|
29.53845
|
30.79875
|
33.61177
|
43.05263
|
42.31064
|
Kouzestan
|
31.59621
|
29.53371
|
35.74085
|
35.52991
|
34.45655
|
32.42161
|
34.00649
|
38.74230
|
38.62614
|
40.07028
|
Fars
|
32.58198
|
35.68393
|
38.88914
|
38.76896
|
37.81940
|
41.40155
|
43.09984
|
46.08379
|
51.16417
|
48.51447
|
Kerman
|
41.86930
|
43.07374
|
43.93290
|
43.80613
|
38.69740
|
42.51203
|
47.94151
|
54.50490
|
55.01675
|
54.21379
|
KhorasanRazavi
|
30.08230
|
30.55565
|
33.87559
|
37.54692
|
38.68014
|
36.49834
|
39.16248
|
42.27683
|
45.79554
|
44.00599
|
Esfahan
|
39.17186
|
44.35660
|
42.49254
|
42.88777
|
47.57625
|
46.97424
|
48.97631
|
52.98739
|
58.29897
|
60.19234
|
SistanBalouchestan
|
18.56919
|
16.24629
|
17.18576
|
19.91114
|
18.87572
|
20.07803
|
21.06130
|
22.73198
|
28.23147
|
28.00504
|
Kordestan
|
21.00364
|
21.45523
|
22.40532
|
26.60195
|
28.66375
|
28.19885
|
31.54782
|
36.57922
|
37.55322
|
41.69228
|
Hamedan
|
28.38906
|
26.02956
|
30.10632
|
27.24881
|
30.27929
|
36.73583
|
39.63895
|
43.01405
|
43.48110
|
38.64652
|
CharmahalBakhtiari
|
29.05778
|
34.59619
|
34.66550
|
36.42123
|
40.51586
|
39.62012
|
44.89361
|
48.58939
|
50.50325
|
46.09934
|
Lorestan
|
24.29695
|
27.46413
|
28.83553
|
21.81317
|
27.93626
|
22.76006
|
22.88330
|
30.98613
|
31.61587
|
32.93983
|
Ilam
|
33.58796
|
33.56935
|
29.34788
|
33.40352
|
34.89885
|
33.36855
|
34.46365
|
38.83065
|
44.75097
|
44.21638
|
KohkilouyeBoyerahamad
|
28.22257
|
27.46634
|
24.37835
|
29.30624
|
28.78879
|
28.05718
|
21.60092
|
22.00725
|
29.49408
|
33.02894
|
Boushehr
|
36.44195
|
42.14790
|
42.87873
|
46.48129
|
50.24133
|
48.40139
|
50.57697
|
53.60981
|
59.71293
|
54.40757
|
Zanjan
|
29.89925
|
35.95433
|
35.24348
|
37.07151
|
36.83635
|
36.01768
|
32.35527
|
38.78832
|
42.13578
|
45.73873
|
Semnan
|
33.51018
|
35.27353
|
37.37244
|
43.67425
|
44.65979
|
42.84886
|
44.62168
|
47.87019
|
50.79232
|
52.66296
|
Yazd
|
57.39872
|
57.21516
|
60.37657
|
60.83035
|
62.06805
|
60.33636
|
62.36644
|
66.94192
|
70.21662
|
70.79475
|
Hormozgan
|
22.93388
|
29.90107
|
32.35488
|
34.98067
|
40.09436
|
41.67693
|
41.42824
|
42.76953
|
41.10113
|
39.64233
|
Tehran
|
36.32085
|
41.52333
|
45.49218
|
47.97036
|
50.56713
|
54.14764
|
55.27813
|
56.24781
|
58.57913
|
60.30397
|
Ardebil
|
24.56566
|
27.23159
|
30.43822
|
24.75731
|
26.35355
|
30.64916
|
31.02180
|
36.32265
|
35.08313
|
35.89254
|
Qom
|
28.18728
|
34.27098
|
36.03244
|
42.53090
|
44.26291
|
37.00672
|
48.31371
|
51.78613
|
51.77588
|
52.62781
|
Qazvin
|
33.17309
|
38.27826
|
39.96982
|
38.11254
|
34.95712
|
37.24503
|
37.40380
|
37.62343
|
45.94644
|
43.72430
|
Golestan
|
23.73958
|
28.89320
|
32.89236
|
30.24539
|
29.57864
|
31.97782
|
33.30858
|
36.58667
|
39.37090
|
39.30258
|
KhorasanShomali
|
20.79677
|
22.35501
|
24.54880
|
28.61405
|
31.60961
|
35.07212
|
36.57086
|
40.60135
|
41.42278
|
41.55714
|
KhorasanJonoubi
|
37.19021
|
37.96605
|
39.16171
|
42.48087
|
41.35287
|
43.29437
|
38.33531
|
44.96586
|
47.76810
|
49.45761
|
Alborz
|
NA
|
38.41375
|
40.27678
|
42.81827
|
49.35706
|
51.15320
|
52.03617
|
52.10986
|
54.43409
|
49.62397
|